1.概述
電源濾波器的設(shè)計通??蓮墓材:筒钅煞矫鎭砜紤]。共模濾波器最重要的部分就是共模電感線圈,與差模電感線圈相比,共模電感線圈的一個顯著優(yōu)點在于它的電感值極高,而且體積又小,設(shè)計共模電感線圈時要考慮的一個重要問題是它的漏感,也就是差模電感。通常,計算漏感的辦法是假定它為共模電感的1%,實際上漏感為共模電感的 0.5% ~ 4%之間。在設(shè)計最優(yōu)性能的電感線圈時,這個誤差的影響可能是不容忽視的。
2.漏感的重要性
漏感是如何形成的呢?緊密繞制,且繞滿一周的環(huán)形線圈,即使沒有磁芯,其所有磁通都集中在線圈“芯”內(nèi)。但是,如果環(huán)形線圈沒有繞滿一周,或者繞制不緊密,那么磁通就會從芯中泄漏出來。這種效應(yīng)與線匝間的相對距離和螺旋管芯體的磁導率成正比。共模電感線圈有兩個繞組,這兩個繞組被設(shè)計成使它們所流過的電流沿線圈芯傳導時方向相反,從而使磁場為0。如果為了安全起見,芯體上的線圈不是雙線繞制,這樣兩個繞組之間就有相當大的間隙,自然就引起磁通“泄漏”,這即是說,磁場在所關(guān)心的各個點上并非真正為0。共模電感線圈的漏感是差模電感。事實上,與差模有關(guān)的磁通必須在某點上離開芯體,換句話說,磁通在芯體外部形成閉合回路,而不僅僅只局限在環(huán)形芯體內(nèi)。如果芯體具有差模電感,那么,差模電流就會使芯體內(nèi)的磁通發(fā)生偏離零點,如果偏離太大,芯體便會發(fā)生磁飽和現(xiàn)象,使共模電感基本與無磁芯的電感一樣。
3.共模電感線圈綜述
濾波器設(shè)計時,假定共模與差模這兩部分是彼此獨立的。然而,這兩部分并非真正獨立,因為共模電感線圈可以提供相當大的差模電感。這部分差模電感可由分立的差模電感來模擬。為了利用差模電感,在濾波器的設(shè)計過程中,共模與差模不應(yīng)同時進行,而應(yīng)該按照一定的順序來做。首先,應(yīng)該測量共模噪聲并將其濾除掉。采用差模抑制網(wǎng)絡(luò)(Differential Mode Rejection Network),可以將差模成分消除,因此就可以直接測量共模噪聲了。如果設(shè)計的共模濾波器要同時使差模噪聲不超過允許范圍,那么就應(yīng)測量共模與差模的混合噪聲。因為已知共模成分在噪聲容限以下,因此超標的僅是差模成分,可用共模濾波器的差模漏感來衰減。對于低功率電源系統(tǒng),共模電感線圈的差模電感足以解決差模輻射問題,因為差模輻射的源阻抗較小,因此只有極少量的電感是有效的。盡管少量的差模電感非常有用,但太大的差模電感可以使扼流圈發(fā)生磁飽和。
4.用LISN原理測量共模電感線圈飽和特性的方法
測量共模線圈磁芯(整體或部分)的飽和特性通常是很困難的。通過簡單的試驗可以看出共模濾波器的衰減在多大程度上受由60Hz編置電流引起的電感減小量的影響。進行此項測試需要一臺示波器和一個差模抑制網(wǎng)絡(luò)(DMRN)。首先,用示波器來監(jiān)測線電壓。按如下方法從示波器的A通道輸入信號,將示波器的時間基準置為2ms/div,然后將觸發(fā)信號加在A通道上,在交流電壓達到峰值時會有線電流產(chǎn)生,此時濾波器效能的降級是意料中的事情。差模抑制網(wǎng)絡(luò)(DMRN)的輸入端連接到LISN,輸出端用50的阻抗進行匹配且與示波器的B通道相連。當共模電感線圈工作在線性區(qū)時,在輸入電流波動期間,B通道監(jiān)測到的發(fā)射增加值不超過6—10dB。在線電壓峰值期間,橋式整流器正向?qū)ㄇ覀魉统潆婋娏鳌H绻材k姼芯€圈達到飽和,那么在輸入浪涌增加時,發(fā)射將會增加。如果共模電感線圈達到強飽和,發(fā)射強度與不加濾波器時的情況是一樣的,也就是說很容易達到40dB以上。這些實驗數(shù)據(jù)可用其他方法來解釋。發(fā)射最小值(線電流為0的時候)是濾波器無偏置電流時表現(xiàn)出來的效果。峰值發(fā)射與最小發(fā)射的比率,即降級因子,用來衡量線電流偏移量對濾波器實際效果的影響。降級因子較大表明共模電感線圈磁芯完全沒有得到恰當?shù)氖褂茫^好的濾波器的“固有降級因子”差不多在2—4之間。它是由兩種現(xiàn)象產(chǎn)生的:第一,60Hz充電電流引起的電感減小(如上所述);第二,橋式整流器的正向及反向?qū)?。共模發(fā)射的等效電路由一個阻抗約為200pF的電壓源、二極管阻抗和LISN的共模阻抗組成。當橋式整流器正向偏置時,在源阻抗、25和LISN共模阻抗之間會產(chǎn)生分壓現(xiàn)象。當橋整流器反向偏置時,在源阻抗、整流橋反偏電容、LISN之間產(chǎn)生分壓現(xiàn)象。當二極管整流橋反向偏置電容較小時,對共模濾除有一定效果。當整流橋正向偏置時則對共模濾除沒有影響。由于產(chǎn)生了分壓,固有降級因子的預期值為2左右。實際值的變化相當大,主要取決于源阻抗和二極管整流橋反向偏置電容的實際大小。在Flugan發(fā)明的一個電路中,正是應(yīng)用這個原理來減小鎮(zhèn)流器的傳導發(fā)射的。
5.用電流原理測量共模電感線圈和特性的方法
如果測試人員相當謹慎,那么就可以采取類似MIL-STD-461中的測試裝置來檢測共模電感線圈的飽和特性。這個原理的應(yīng)用如下:測試時采用兩只電流探頭,低頻探頭監(jiān)測線電流,高頻探頭僅測量共模發(fā)射電流。線電流監(jiān)視器作為觸發(fā)源。不過,使用電流探頭的一個隱患是差模電流衰減是管芯內(nèi)繞組導線對稱性的函數(shù)。如果精心合理安排繞線布局的話,30dB左右的差模電流衰減是能夠得到的。即使達到這個衰減值,測得的差模分量也可能超過預期的共模分量值??捎萌缦聝身椉夹g(shù)來解決這一問題:第一,將一只6kHz轉(zhuǎn)折頻率的高階高通濾波器與示波器串聯(lián)(注意應(yīng)用50的終端阻抗進行匹配)。第二,在每只10μF的電容與電源總線之間接入一根導線。為了測量共模輻射,電流探頭應(yīng)夾在這些載有極小線電流的導線近旁。
6.共模電感線圈內(nèi)存在的差模與共模磁通
為了快速且淺顯地介紹共模電感線圈的作用,可考慮采用以下論述:“共模電感線圈管芯兩側(cè)的磁場相互抵消,因此不存在磁通使管芯飽和。”盡管這種論述對共模電感線圈作用的直覺敘述具體化了,但實質(zhì)上并非如此。
7.漏感綜述
共模電感線圈能發(fā)揮一定的作用是由于μcm比μdm大好幾個數(shù)量級的緣故,因為共模電流通常很小,可以通過使L/D保持在較低值來獲得更小的μdm。為了得到共模電感,同時又要使差模電感最小,最好是采用橫截面積較大的磁芯繞制成多匝線圈。采用較大的螺旋管磁芯,也并非一定要這樣的磁芯,可在共模電感線圈內(nèi)并入有效的差模電感。因為差模磁通是遠離磁芯(環(huán)形結(jié)構(gòu))的,因此可能會產(chǎn)生極強的輻射。尤其是濾波器安裝在PCB板上的情況下,這種輻射可以耦合到電源線,使傳導發(fā)射增強。當磁性材料被帶到場內(nèi)時(例如,環(huán)形磁芯放置在鐵殼里),差模磁導率就可能會顯著地增加,從而由于差模電流而導致磁芯的飽和。
8.無輻射共模電感線圈結(jié)構(gòu)
為了實現(xiàn)有效的濾波器設(shè)計,磁通離開磁芯引起的輻射問題必須予以解決。其辦法有是將差模磁通限制在磁性結(jié)構(gòu)物體中(壺形鐵芯),或者是為差模磁通(E形鐵芯)提供一條高磁導率的路徑。
9.壺形鐵芯結(jié)構(gòu)
如果共模電感線圈采用壺形鐵芯結(jié)構(gòu),那么就需兩個繞軸。壺形鐵芯窗格里的兩組線圈及其產(chǎn)生的磁通路徑。同時也表明了同一結(jié)構(gòu)條件下的差模磁通路徑。
10.E形鐵芯結(jié)構(gòu)
另外還有一種共模電感線圈,它比環(huán)形磁芯線圈更易繞制,但比壺形鐵芯線圈的輻射更厲害,E形鐵芯線圈共模磁通將外部引線上的兩組線圈都聯(lián)系在一起了。為了獲得較高的磁導率,在外部引線上應(yīng)沒有空氣隙。另一方面,差模磁通將外部引線和中心引線聯(lián)系起來。差模路徑中的磁導率可以通
過使中心引線彼此隔開來取得,中心引線是產(chǎn)生輻射的主要區(qū)域。